bev-project/archive_scripts/START_TRAINING.sh

75 lines
2.6 KiB
Bash
Raw Normal View History

#!/bin/bash
# BEVFusion 训练启动脚本
# 使用前请选择要训练的任务(取消注释对应的命令)
set -e
# 设置conda环境
export PATH=/opt/conda/bin:$PATH
# 切换到项目目录
cd /workspace/bevfusion
echo "=========================================="
echo "BEVFusion 训练启动"
echo "=========================================="
echo ""
echo "硬件配置:"
echo " GPU: 8x Tesla V100S (32GB)"
echo " 总显存: 256GB"
echo ""
echo "软件环境:"
echo " Python: $(python --version 2>&1)"
echo " PyTorch: $(python -c 'import torch; print(torch.__version__)')"
echo " CUDA: $(python -c 'import torch; print(torch.cuda.is_available())')"
echo ""
echo "数据集:"
echo " 位置: /data/nuscenes (已软链接到 ./data)"
echo ""
echo "预训练模型:"
echo " Camera Backbone: pretrained/swint-nuimages-pretrained.pth"
echo " LiDAR Model: pretrained/lidar-only-det.pth"
echo ""
echo "=========================================="
echo ""
# ============================================
# 选择要训练的任务(取消注释对应的命令)
# ============================================
# 任务1: 3D目标检测训练推荐
# 预计时间20-24小时预期性能mAP ~68-70%, NDS ~71-72%
echo "开始训练: 3D目标检测 (Camera + LiDAR)"
echo "配置: 8 GPU, TransFusion, SwinTransformer"
echo ""
torchpack dist-run -np 8 python tools/train.py \
configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/convfuser.yaml \
--model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth \
--load_from pretrained/lidar-only-det.pth
# ============================================
# 其他训练选项(需要时取消注释)
# ============================================
# 任务2: BEV地图分割训练
# 预计时间12-15小时预期性能mIoU ~62-63%
# echo "开始训练: BEV地图分割 (Camera + LiDAR)"
# torchpack dist-run -np 8 python tools/train.py \
# configs/nuscenes/seg/fusion-bev256d2-lss.yaml \
# --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth
# 任务3: 多任务训练(检测 + 分割)
# 预计时间28-32小时
# echo "开始训练: 多任务 (检测 + 分割)"
# torchpack dist-run -np 8 python tools/train.py \
# configs/nuscenes/multitask/fusion-det-seg-swint.yaml \
# --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth \
# --load_from pretrained/lidar-only-det.pth
echo ""
echo "=========================================="
echo "训练完成!"
echo "=========================================="