bev-project/mmdet3d/ops/pointnet_modules/paconv_sa_module.py

349 lines
12 KiB
Python
Raw Permalink Normal View History

2022-06-03 12:21:18 +08:00
import torch
from torch import nn as nn
from mmdet3d.ops import PAConv, PAConvCUDA
from .builder import SA_MODULES
from .point_sa_module import BasePointSAModule
@SA_MODULES.register_module()
class PAConvSAModuleMSG(BasePointSAModule):
r"""Point set abstraction module with multi-scale grouping (MSG) used in
PAConv networks.
Replace the MLPs in `PointSAModuleMSG` with PAConv layers.
See the `paper <https://arxiv.org/abs/2103.14635>`_ for more details.
Args:
paconv_num_kernels (list[list[int]]): Number of kernel weights in the
weight banks of each layer's PAConv.
paconv_kernel_input (str, optional): Input features to be multiplied
with kernel weights. Can be 'identity' or 'w_neighbor'.
Defaults to 'w_neighbor'.
scorenet_input (str, optional): Type of the input to ScoreNet.
Defaults to 'w_neighbor_dist'. Can be the following values:
- 'identity': Use xyz coordinates as input.
- 'w_neighbor': Use xyz coordinates and the difference with center
points as input.
- 'w_neighbor_dist': Use xyz coordinates, the difference with
center points and the Euclidian distance as input.
scorenet_cfg (dict, optional): Config of the ScoreNet module, which
may contain the following keys and values:
- mlp_channels (List[int]): Hidden units of MLPs.
- score_norm (str): Normalization function of output scores.
Can be 'softmax', 'sigmoid' or 'identity'.
- temp_factor (float): Temperature factor to scale the output
scores before softmax.
- last_bn (bool): Whether to use BN on the last output of mlps.
"""
def __init__(
self,
num_point,
radii,
sample_nums,
mlp_channels,
paconv_num_kernels,
fps_mod=["D-FPS"],
fps_sample_range_list=[-1],
dilated_group=False,
norm_cfg=dict(type="BN2d", momentum=0.1),
use_xyz=True,
pool_mod="max",
normalize_xyz=False,
bias="auto",
paconv_kernel_input="w_neighbor",
scorenet_input="w_neighbor_dist",
scorenet_cfg=dict(
mlp_channels=[16, 16, 16], score_norm="softmax", temp_factor=1.0, last_bn=False
),
):
super(PAConvSAModuleMSG, self).__init__(
num_point=num_point,
radii=radii,
sample_nums=sample_nums,
mlp_channels=mlp_channels,
fps_mod=fps_mod,
fps_sample_range_list=fps_sample_range_list,
dilated_group=dilated_group,
use_xyz=use_xyz,
pool_mod=pool_mod,
normalize_xyz=normalize_xyz,
grouper_return_grouped_xyz=True,
)
assert len(paconv_num_kernels) == len(mlp_channels)
for i in range(len(mlp_channels)):
assert (
len(paconv_num_kernels[i]) == len(mlp_channels[i]) - 1
), "PAConv number of kernel weights wrong"
# in PAConv, bias only exists in ScoreNet
scorenet_cfg["bias"] = bias
for i in range(len(self.mlp_channels)):
mlp_channel = self.mlp_channels[i]
if use_xyz:
mlp_channel[0] += 3
num_kernels = paconv_num_kernels[i]
mlp = nn.Sequential()
for i in range(len(mlp_channel) - 1):
mlp.add_module(
f"layer{i}",
PAConv(
mlp_channel[i],
mlp_channel[i + 1],
num_kernels[i],
norm_cfg=norm_cfg,
kernel_input=paconv_kernel_input,
scorenet_input=scorenet_input,
scorenet_cfg=scorenet_cfg,
),
)
self.mlps.append(mlp)
@SA_MODULES.register_module()
class PAConvSAModule(PAConvSAModuleMSG):
r"""Point set abstraction module with single-scale grouping (SSG) used in
PAConv networks.
Replace the MLPs in `PointSAModule` with PAConv layers. See the `paper
<https://arxiv.org/abs/2103.14635>`_ for more details.
"""
def __init__(
self,
mlp_channels,
paconv_num_kernels,
num_point=None,
radius=None,
num_sample=None,
norm_cfg=dict(type="BN2d", momentum=0.1),
use_xyz=True,
pool_mod="max",
fps_mod=["D-FPS"],
fps_sample_range_list=[-1],
normalize_xyz=False,
paconv_kernel_input="w_neighbor",
scorenet_input="w_neighbor_dist",
scorenet_cfg=dict(
mlp_channels=[16, 16, 16], score_norm="softmax", temp_factor=1.0, last_bn=False
),
):
super(PAConvSAModule, self).__init__(
mlp_channels=[mlp_channels],
paconv_num_kernels=[paconv_num_kernels],
num_point=num_point,
radii=[radius],
sample_nums=[num_sample],
norm_cfg=norm_cfg,
use_xyz=use_xyz,
pool_mod=pool_mod,
fps_mod=fps_mod,
fps_sample_range_list=fps_sample_range_list,
normalize_xyz=normalize_xyz,
paconv_kernel_input=paconv_kernel_input,
scorenet_input=scorenet_input,
scorenet_cfg=scorenet_cfg,
)
@SA_MODULES.register_module()
class PAConvCUDASAModuleMSG(BasePointSAModule):
r"""Point set abstraction module with multi-scale grouping (MSG) used in
PAConv networks.
Replace the non CUDA version PAConv with CUDA implemented PAConv for
efficient computation. See the `paper <https://arxiv.org/abs/2103.14635>`_
for more details.
"""
def __init__(
self,
num_point,
radii,
sample_nums,
mlp_channels,
paconv_num_kernels,
fps_mod=["D-FPS"],
fps_sample_range_list=[-1],
dilated_group=False,
norm_cfg=dict(type="BN2d", momentum=0.1),
use_xyz=True,
pool_mod="max",
normalize_xyz=False,
bias="auto",
paconv_kernel_input="w_neighbor",
scorenet_input="w_neighbor_dist",
scorenet_cfg=dict(
mlp_channels=[8, 16, 16], score_norm="softmax", temp_factor=1.0, last_bn=False
),
):
super(PAConvCUDASAModuleMSG, self).__init__(
num_point=num_point,
radii=radii,
sample_nums=sample_nums,
mlp_channels=mlp_channels,
fps_mod=fps_mod,
fps_sample_range_list=fps_sample_range_list,
dilated_group=dilated_group,
use_xyz=use_xyz,
pool_mod=pool_mod,
normalize_xyz=normalize_xyz,
grouper_return_grouped_xyz=True,
grouper_return_grouped_idx=True,
)
assert len(paconv_num_kernels) == len(mlp_channels)
for i in range(len(mlp_channels)):
assert (
len(paconv_num_kernels[i]) == len(mlp_channels[i]) - 1
), "PAConv number of kernel weights wrong"
# in PAConv, bias only exists in ScoreNet
scorenet_cfg["bias"] = bias
# we need to manually concat xyz for CUDA implemented PAConv
self.use_xyz = use_xyz
for i in range(len(self.mlp_channels)):
mlp_channel = self.mlp_channels[i]
if use_xyz:
mlp_channel[0] += 3
num_kernels = paconv_num_kernels[i]
# can't use `nn.Sequential` for PAConvCUDA because its input and
# output have different shapes
mlp = nn.ModuleList()
for i in range(len(mlp_channel) - 1):
mlp.append(
PAConvCUDA(
mlp_channel[i],
mlp_channel[i + 1],
num_kernels[i],
norm_cfg=norm_cfg,
kernel_input=paconv_kernel_input,
scorenet_input=scorenet_input,
scorenet_cfg=scorenet_cfg,
)
)
self.mlps.append(mlp)
def forward(
self,
points_xyz,
features=None,
indices=None,
target_xyz=None,
):
"""forward.
Args:
points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
features (Tensor): (B, C, N) features of each point.
Default: None.
indices (Tensor): (B, num_point) Index of the features.
Default: None.
target_xyz (Tensor): (B, M, 3) new_xyz coordinates of the outputs.
Returns:
Tensor: (B, M, 3) where M is the number of points.
New features xyz.
Tensor: (B, M, sum_k(mlps[k][-1])) where M is the number
of points. New feature descriptors.
Tensor: (B, M) where M is the number of points.
Index of the features.
"""
new_features_list = []
# sample points, (B, num_point, 3), (B, num_point)
new_xyz, indices = self._sample_points(points_xyz, features, indices, target_xyz)
for i in range(len(self.groupers)):
xyz = points_xyz
new_features = features
for j in range(len(self.mlps[i])):
# we don't use grouped_features here to avoid large GPU memory
# _, (B, 3, num_point, nsample), (B, num_point, nsample)
_, grouped_xyz, grouped_idx = self.groupers[i](xyz, new_xyz, new_features)
# concat xyz as additional features
if self.use_xyz and j == 0:
# (B, C+3, N)
new_features = torch.cat((points_xyz.permute(0, 2, 1), new_features), dim=1)
# (B, out_c, num_point, nsample)
grouped_new_features = self.mlps[i][j](
(new_features, grouped_xyz, grouped_idx.long())
)[0]
# different from PointNet++ and non CUDA version of PAConv
# CUDA version of PAConv needs to aggregate local features
# every time after it passes through a Conv layer
# in order to transform to valid input shape
# (B, out_c, num_point)
new_features = self._pool_features(grouped_new_features)
# constrain the points to be grouped for next PAConv layer
# because new_features only contains sampled centers now
# (B, num_point, 3)
xyz = new_xyz
new_features_list.append(new_features)
return new_xyz, torch.cat(new_features_list, dim=1), indices
@SA_MODULES.register_module()
class PAConvCUDASAModule(PAConvCUDASAModuleMSG):
r"""Point set abstraction module with single-scale grouping (SSG) used in
PAConv networks.
Replace the non CUDA version PAConv with CUDA implemented PAConv for
efficient computation. See the `paper <https://arxiv.org/abs/2103.14635>`_
for more details.
"""
def __init__(
self,
mlp_channels,
paconv_num_kernels,
num_point=None,
radius=None,
num_sample=None,
norm_cfg=dict(type="BN2d", momentum=0.1),
use_xyz=True,
pool_mod="max",
fps_mod=["D-FPS"],
fps_sample_range_list=[-1],
normalize_xyz=False,
paconv_kernel_input="w_neighbor",
scorenet_input="w_neighbor_dist",
scorenet_cfg=dict(
mlp_channels=[8, 16, 16], score_norm="softmax", temp_factor=1.0, last_bn=False
),
):
super(PAConvCUDASAModule, self).__init__(
mlp_channels=[mlp_channels],
paconv_num_kernels=[paconv_num_kernels],
num_point=num_point,
radii=[radius],
sample_nums=[num_sample],
norm_cfg=norm_cfg,
use_xyz=use_xyz,
pool_mod=pool_mod,
fps_mod=fps_mod,
fps_sample_range_list=fps_sample_range_list,
normalize_xyz=normalize_xyz,
paconv_kernel_input=paconv_kernel_input,
scorenet_input=scorenet_input,
scorenet_cfg=scorenet_cfg,
)