355 lines
13 KiB
Python
355 lines
13 KiB
Python
|
|
import numpy as np
|
||
|
|
import torch
|
||
|
|
|
||
|
|
from mmdet3d.core.points import BasePoints
|
||
|
|
from mmdet3d.ops import points_in_boxes_batch
|
||
|
|
from .base_box3d import BaseInstance3DBoxes
|
||
|
|
from .utils import limit_period, rotation_3d_in_axis
|
||
|
|
|
||
|
|
|
||
|
|
class DepthInstance3DBoxes(BaseInstance3DBoxes):
|
||
|
|
"""3D boxes of instances in Depth coordinates.
|
||
|
|
|
||
|
|
Coordinates in Depth:
|
||
|
|
|
||
|
|
.. code-block:: none
|
||
|
|
|
||
|
|
up z y front (yaw=-0.5*pi)
|
||
|
|
^ ^
|
||
|
|
| /
|
||
|
|
| /
|
||
|
|
0 ------> x right (yaw=0)
|
||
|
|
|
||
|
|
The relative coordinate of bottom center in a Depth box is (0.5, 0.5, 0),
|
||
|
|
and the yaw is around the z axis, thus the rotation axis=2.
|
||
|
|
The yaw is 0 at the positive direction of x axis, and decreases from
|
||
|
|
the positive direction of x to the positive direction of y.
|
||
|
|
Also note that rotation of DepthInstance3DBoxes is counterclockwise,
|
||
|
|
which is reverse to the definition of the yaw angle (clockwise).
|
||
|
|
|
||
|
|
A refactor is ongoing to make the three coordinate systems
|
||
|
|
easier to understand and convert between each other.
|
||
|
|
|
||
|
|
Attributes:
|
||
|
|
tensor (torch.Tensor): Float matrix of N x box_dim.
|
||
|
|
box_dim (int): Integer indicates the dimension of a box
|
||
|
|
Each row is (x, y, z, x_size, y_size, z_size, yaw, ...).
|
||
|
|
with_yaw (bool): If True, the value of yaw will be set to 0 as minmax
|
||
|
|
boxes.
|
||
|
|
"""
|
||
|
|
|
||
|
|
@property
|
||
|
|
def gravity_center(self):
|
||
|
|
"""torch.Tensor: A tensor with center of each box."""
|
||
|
|
bottom_center = self.bottom_center
|
||
|
|
gravity_center = torch.zeros_like(bottom_center)
|
||
|
|
gravity_center[:, :2] = bottom_center[:, :2]
|
||
|
|
gravity_center[:, 2] = bottom_center[:, 2] + self.tensor[:, 5] * 0.5
|
||
|
|
return gravity_center
|
||
|
|
|
||
|
|
@property
|
||
|
|
def corners(self):
|
||
|
|
"""torch.Tensor: Coordinates of corners of all the boxes
|
||
|
|
in shape (N, 8, 3).
|
||
|
|
|
||
|
|
Convert the boxes to corners in clockwise order, in form of
|
||
|
|
``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)``
|
||
|
|
|
||
|
|
.. code-block:: none
|
||
|
|
|
||
|
|
up z
|
||
|
|
front y ^
|
||
|
|
/ |
|
||
|
|
/ |
|
||
|
|
(x0, y1, z1) + ----------- + (x1, y1, z1)
|
||
|
|
/| / |
|
||
|
|
/ | / |
|
||
|
|
(x0, y0, z1) + ----------- + + (x1, y1, z0)
|
||
|
|
| / . | /
|
||
|
|
| / origin | /
|
||
|
|
(x0, y0, z0) + ----------- + --------> right x
|
||
|
|
(x1, y0, z0)
|
||
|
|
"""
|
||
|
|
# TODO: rotation_3d_in_axis function do not support
|
||
|
|
# empty tensor currently.
|
||
|
|
assert len(self.tensor) != 0
|
||
|
|
dims = self.dims
|
||
|
|
corners_norm = torch.from_numpy(
|
||
|
|
np.stack(np.unravel_index(np.arange(8), [2] * 3), axis=1)
|
||
|
|
).to(device=dims.device, dtype=dims.dtype)
|
||
|
|
|
||
|
|
corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
|
||
|
|
# use relative origin (0.5, 0.5, 0)
|
||
|
|
corners_norm = corners_norm - dims.new_tensor([0.5, 0.5, 0])
|
||
|
|
corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])
|
||
|
|
|
||
|
|
# rotate around z axis
|
||
|
|
corners = rotation_3d_in_axis(corners, self.tensor[:, 6], axis=2)
|
||
|
|
corners += self.tensor[:, :3].view(-1, 1, 3)
|
||
|
|
return corners
|
||
|
|
|
||
|
|
@property
|
||
|
|
def bev(self):
|
||
|
|
"""torch.Tensor: A n x 5 tensor of 2D BEV box of each box
|
||
|
|
in XYWHR format."""
|
||
|
|
return self.tensor[:, [0, 1, 3, 4, 6]]
|
||
|
|
|
||
|
|
@property
|
||
|
|
def nearest_bev(self):
|
||
|
|
"""torch.Tensor: A tensor of 2D BEV box of each box
|
||
|
|
without rotation."""
|
||
|
|
# Obtain BEV boxes with rotation in XYWHR format
|
||
|
|
bev_rotated_boxes = self.bev
|
||
|
|
# convert the rotation to a valid range
|
||
|
|
rotations = bev_rotated_boxes[:, -1]
|
||
|
|
normed_rotations = torch.abs(limit_period(rotations, 0.5, np.pi))
|
||
|
|
|
||
|
|
# find the center of boxes
|
||
|
|
conditions = (normed_rotations > np.pi / 4)[..., None]
|
||
|
|
bboxes_xywh = torch.where(
|
||
|
|
conditions, bev_rotated_boxes[:, [0, 1, 3, 2]], bev_rotated_boxes[:, :4]
|
||
|
|
)
|
||
|
|
|
||
|
|
centers = bboxes_xywh[:, :2]
|
||
|
|
dims = bboxes_xywh[:, 2:]
|
||
|
|
bev_boxes = torch.cat([centers - dims / 2, centers + dims / 2], dim=-1)
|
||
|
|
return bev_boxes
|
||
|
|
|
||
|
|
def rotate(self, angle, points=None):
|
||
|
|
"""Rotate boxes with points (optional) with the given angle or \
|
||
|
|
rotation matrix.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
angle (float | torch.Tensor | np.ndarray):
|
||
|
|
Rotation angle or rotation matrix.
|
||
|
|
points (torch.Tensor, numpy.ndarray, :obj:`BasePoints`, optional):
|
||
|
|
Points to rotate. Defaults to None.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
tuple or None: When ``points`` is None, the function returns \
|
||
|
|
None, otherwise it returns the rotated points and the \
|
||
|
|
rotation matrix ``rot_mat_T``.
|
||
|
|
"""
|
||
|
|
if not isinstance(angle, torch.Tensor):
|
||
|
|
angle = self.tensor.new_tensor(angle)
|
||
|
|
assert (
|
||
|
|
angle.shape == torch.Size([3, 3]) or angle.numel() == 1
|
||
|
|
), f"invalid rotation angle shape {angle.shape}"
|
||
|
|
|
||
|
|
if angle.numel() == 1:
|
||
|
|
rot_sin = torch.sin(angle)
|
||
|
|
rot_cos = torch.cos(angle)
|
||
|
|
rot_mat_T = self.tensor.new_tensor(
|
||
|
|
[[rot_cos, -rot_sin, 0], [rot_sin, rot_cos, 0], [0, 0, 1]]
|
||
|
|
).T
|
||
|
|
else:
|
||
|
|
rot_mat_T = angle.T
|
||
|
|
rot_sin = rot_mat_T[0, 1]
|
||
|
|
rot_cos = rot_mat_T[0, 0]
|
||
|
|
angle = np.arctan2(rot_sin, rot_cos)
|
||
|
|
|
||
|
|
self.tensor[:, 0:3] = self.tensor[:, 0:3] @ rot_mat_T
|
||
|
|
if self.with_yaw:
|
||
|
|
self.tensor[:, 6] -= angle
|
||
|
|
else:
|
||
|
|
corners_rot = self.corners @ rot_mat_T
|
||
|
|
new_x_size = (
|
||
|
|
corners_rot[..., 0].max(dim=1, keepdim=True)[0]
|
||
|
|
- corners_rot[..., 0].min(dim=1, keepdim=True)[0]
|
||
|
|
)
|
||
|
|
new_y_size = (
|
||
|
|
corners_rot[..., 1].max(dim=1, keepdim=True)[0]
|
||
|
|
- corners_rot[..., 1].min(dim=1, keepdim=True)[0]
|
||
|
|
)
|
||
|
|
self.tensor[:, 3:5] = torch.cat((new_x_size, new_y_size), dim=-1)
|
||
|
|
|
||
|
|
if points is not None:
|
||
|
|
if isinstance(points, torch.Tensor):
|
||
|
|
points[:, :3] = points[:, :3] @ rot_mat_T
|
||
|
|
elif isinstance(points, np.ndarray):
|
||
|
|
rot_mat_T = rot_mat_T.numpy()
|
||
|
|
points[:, :3] = np.dot(points[:, :3], rot_mat_T)
|
||
|
|
elif isinstance(points, BasePoints):
|
||
|
|
# anti-clockwise
|
||
|
|
points.rotate(angle)
|
||
|
|
else:
|
||
|
|
raise ValueError
|
||
|
|
return points, rot_mat_T
|
||
|
|
|
||
|
|
def flip(self, bev_direction="horizontal", points=None):
|
||
|
|
"""Flip the boxes in BEV along given BEV direction.
|
||
|
|
|
||
|
|
In Depth coordinates, it flips x (horizontal) or y (vertical) axis.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
bev_direction (str): Flip direction (horizontal or vertical).
|
||
|
|
points (torch.Tensor, numpy.ndarray, :obj:`BasePoints`, None):
|
||
|
|
Points to flip. Defaults to None.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
torch.Tensor, numpy.ndarray or None: Flipped points.
|
||
|
|
"""
|
||
|
|
assert bev_direction in ("horizontal", "vertical")
|
||
|
|
if bev_direction == "horizontal":
|
||
|
|
self.tensor[:, 0::7] = -self.tensor[:, 0::7]
|
||
|
|
if self.with_yaw:
|
||
|
|
self.tensor[:, 6] = -self.tensor[:, 6] + np.pi
|
||
|
|
elif bev_direction == "vertical":
|
||
|
|
self.tensor[:, 1::7] = -self.tensor[:, 1::7]
|
||
|
|
if self.with_yaw:
|
||
|
|
self.tensor[:, 6] = -self.tensor[:, 6]
|
||
|
|
|
||
|
|
if points is not None:
|
||
|
|
assert isinstance(points, (torch.Tensor, np.ndarray, BasePoints))
|
||
|
|
if isinstance(points, (torch.Tensor, np.ndarray)):
|
||
|
|
if bev_direction == "horizontal":
|
||
|
|
points[:, 0] = -points[:, 0]
|
||
|
|
elif bev_direction == "vertical":
|
||
|
|
points[:, 1] = -points[:, 1]
|
||
|
|
elif isinstance(points, BasePoints):
|
||
|
|
points.flip(bev_direction)
|
||
|
|
return points
|
||
|
|
|
||
|
|
def in_range_bev(self, box_range):
|
||
|
|
"""Check whether the boxes are in the given range.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
box_range (list | torch.Tensor): The range of box
|
||
|
|
(x_min, y_min, x_max, y_max).
|
||
|
|
|
||
|
|
Note:
|
||
|
|
In the original implementation of SECOND, checking whether
|
||
|
|
a box in the range checks whether the points are in a convex
|
||
|
|
polygon, we try to reduce the burdun for simpler cases.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
torch.Tensor: Indicating whether each box is inside \
|
||
|
|
the reference range.
|
||
|
|
"""
|
||
|
|
in_range_flags = (
|
||
|
|
(self.tensor[:, 0] > box_range[0])
|
||
|
|
& (self.tensor[:, 1] > box_range[1])
|
||
|
|
& (self.tensor[:, 0] < box_range[2])
|
||
|
|
& (self.tensor[:, 1] < box_range[3])
|
||
|
|
)
|
||
|
|
return in_range_flags
|
||
|
|
|
||
|
|
def convert_to(self, dst, rt_mat=None):
|
||
|
|
"""Convert self to ``dst`` mode.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
dst (:obj:`Box3DMode`): The target Box mode.
|
||
|
|
rt_mat (np.ndarray | torch.Tensor): The rotation and translation
|
||
|
|
matrix between different coordinates. Defaults to None.
|
||
|
|
The conversion from ``src`` coordinates to ``dst`` coordinates
|
||
|
|
usually comes along the change of sensors, e.g., from camera
|
||
|
|
to LiDAR. This requires a transformation matrix.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
:obj:`DepthInstance3DBoxes`: \
|
||
|
|
The converted box of the same type in the ``dst`` mode.
|
||
|
|
"""
|
||
|
|
from .box_3d_mode import Box3DMode
|
||
|
|
|
||
|
|
return Box3DMode.convert(box=self, src=Box3DMode.DEPTH, dst=dst, rt_mat=rt_mat)
|
||
|
|
|
||
|
|
def points_in_boxes(self, points):
|
||
|
|
"""Find points that are in boxes (CUDA).
|
||
|
|
|
||
|
|
Args:
|
||
|
|
points (torch.Tensor): Points in shape [1, M, 3] or [M, 3], \
|
||
|
|
3 dimensions are [x, y, z] in LiDAR coordinate.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
torch.Tensor: The index of boxes each point lies in with shape \
|
||
|
|
of (B, M, T).
|
||
|
|
"""
|
||
|
|
from .box_3d_mode import Box3DMode
|
||
|
|
|
||
|
|
# to lidar
|
||
|
|
points_lidar = points.clone()
|
||
|
|
points_lidar = points_lidar[..., [1, 0, 2]]
|
||
|
|
points_lidar[..., 1] *= -1
|
||
|
|
if points.dim() == 2:
|
||
|
|
points_lidar = points_lidar.unsqueeze(0)
|
||
|
|
else:
|
||
|
|
assert points.dim() == 3 and points_lidar.shape[0] == 1
|
||
|
|
|
||
|
|
boxes_lidar = self.convert_to(Box3DMode.LIDAR).tensor
|
||
|
|
boxes_lidar = boxes_lidar.to(points.device).unsqueeze(0)
|
||
|
|
box_idxs_of_pts = points_in_boxes_batch(points_lidar, boxes_lidar)
|
||
|
|
|
||
|
|
return box_idxs_of_pts.squeeze(0)
|
||
|
|
|
||
|
|
def enlarged_box(self, extra_width):
|
||
|
|
"""Enlarge the length, width and height boxes.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
extra_width (float | torch.Tensor): Extra width to enlarge the box.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
:obj:`LiDARInstance3DBoxes`: Enlarged boxes.
|
||
|
|
"""
|
||
|
|
enlarged_boxes = self.tensor.clone()
|
||
|
|
enlarged_boxes[:, 3:6] += extra_width * 2
|
||
|
|
# bottom center z minus extra_width
|
||
|
|
enlarged_boxes[:, 2] -= extra_width
|
||
|
|
return self.new_box(enlarged_boxes)
|
||
|
|
|
||
|
|
def get_surface_line_center(self):
|
||
|
|
"""Compute surface and line center of bounding boxes.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
torch.Tensor: Surface and line center of bounding boxes.
|
||
|
|
"""
|
||
|
|
obj_size = self.dims
|
||
|
|
center = self.gravity_center.view(-1, 1, 3)
|
||
|
|
batch_size = center.shape[0]
|
||
|
|
|
||
|
|
rot_sin = torch.sin(-self.yaw)
|
||
|
|
rot_cos = torch.cos(-self.yaw)
|
||
|
|
rot_mat_T = self.yaw.new_zeros(tuple(list(self.yaw.shape) + [3, 3]))
|
||
|
|
rot_mat_T[..., 0, 0] = rot_cos
|
||
|
|
rot_mat_T[..., 0, 1] = -rot_sin
|
||
|
|
rot_mat_T[..., 1, 0] = rot_sin
|
||
|
|
rot_mat_T[..., 1, 1] = rot_cos
|
||
|
|
rot_mat_T[..., 2, 2] = 1
|
||
|
|
|
||
|
|
# Get the object surface center
|
||
|
|
offset = obj_size.new_tensor(
|
||
|
|
[[0, 0, 1], [0, 0, -1], [0, 1, 0], [0, -1, 0], [1, 0, 0], [-1, 0, 0]]
|
||
|
|
)
|
||
|
|
offset = offset.view(1, 6, 3) / 2
|
||
|
|
surface_3d = (offset * obj_size.view(batch_size, 1, 3).repeat(1, 6, 1)).reshape(-1, 3)
|
||
|
|
|
||
|
|
# Get the object line center
|
||
|
|
offset = obj_size.new_tensor(
|
||
|
|
[
|
||
|
|
[1, 0, 1],
|
||
|
|
[-1, 0, 1],
|
||
|
|
[0, 1, 1],
|
||
|
|
[0, -1, 1],
|
||
|
|
[1, 0, -1],
|
||
|
|
[-1, 0, -1],
|
||
|
|
[0, 1, -1],
|
||
|
|
[0, -1, -1],
|
||
|
|
[1, 1, 0],
|
||
|
|
[1, -1, 0],
|
||
|
|
[-1, 1, 0],
|
||
|
|
[-1, -1, 0],
|
||
|
|
]
|
||
|
|
)
|
||
|
|
offset = offset.view(1, 12, 3) / 2
|
||
|
|
|
||
|
|
line_3d = (offset * obj_size.view(batch_size, 1, 3).repeat(1, 12, 1)).reshape(-1, 3)
|
||
|
|
|
||
|
|
surface_rot = rot_mat_T.repeat(6, 1, 1)
|
||
|
|
surface_3d = torch.matmul(surface_3d.unsqueeze(-2), surface_rot.transpose(2, 1)).squeeze(-2)
|
||
|
|
surface_center = center.repeat(1, 6, 1).reshape(-1, 3) + surface_3d
|
||
|
|
|
||
|
|
line_rot = rot_mat_T.repeat(12, 1, 1)
|
||
|
|
line_3d = torch.matmul(line_3d.unsqueeze(-2), line_rot.transpose(2, 1)).squeeze(-2)
|
||
|
|
line_center = center.repeat(1, 12, 1).reshape(-1, 3) + line_3d
|
||
|
|
|
||
|
|
return surface_center, line_center
|