bev-project/CAMERA_FLEXIBILITY_QUICK_GU...

433 lines
8.9 KiB
Markdown
Raw Permalink Normal View History

# Camera配置灵活性方案速览
**目标**: 支持不同数量和类型的cameras
**当前**: 6 cameras (nuScenes)
**需求**: 灵活配置 1-N cameras
---
## 🎯 五种方案速览
### 1⃣ 简单动态配置 ⭐
```
实现难度: ★☆☆☆☆
参数增加: 0
速度影响: 0%
适用: 3-6个相似cameras
只需修改数据加载,模型代码无需改动
```
### 2⃣ Camera Adapter ⭐⭐⭐ **推荐**
```
实现难度: ★★☆☆☆
参数增加: +4M
速度影响: +5%
适用: 不同类型cameras (广角/长焦)
每个camera有独立adapter可学习不同处理策略
```
### 3⃣ Mixture of Experts (MoE) ⭐⭐⭐⭐
```
实现难度: ★★★☆☆
参数增加: +10M
速度影响: +20%
适用: 多种camera类型
Router自动选择expert处理不同cameras
```
### 4⃣ Per-Camera Attention ⭐⭐⭐⭐⭐ **最强**
```
实现难度: ★★★☆☆
参数增加: +8M
速度影响: +15%
适用: 任意cameras需要最优性能
Camera间信息交互动态权重融合
```
### 5⃣ Sparse MoE ⭐⭐⭐⭐
```
实现难度: ★★★★☆
参数增加: +12M
速度影响: +10%
适用: 大量cameras (>6)
Top-K激活高效处理多cameras
```
---
## 📊 方案选择决策树
```
您有几个cameras
├─ 3-6个类型相似
│ └─→ 方案1: 简单动态配置 ✅
├─ 4-6个有广角+长焦
│ └─→ 方案2: Camera Adapter ✅ 推荐
├─ 6-8个多种类型
│ └─→ 方案3: MoE 或 方案4: Attention
└─ >8个异构系统
└─→ 方案5: Sparse MoE
```
---
## 🚀 针对您的项目建议
### 现状
```
✅ Phase 4A Task-GCA训练中
✅ Epoch 6/20 (32%完成)
✅ 预计11/13完成
```
### 推荐方案: Camera Adapter
**时机**: 等Task-GCA训练完成后 (11/13后)
**理由**:
1. ✅ 与Task-GCA架构兼容
2. ✅ 实现快 (1周)
3. ✅ 风险低
4. ✅ ROI高 (性能+1-2%)
**组合架构**:
```
Input (N cameras)
Swin Backbone (共享)
Camera Adapters (N个独立) ← 新增
LSS Transform
BEV Pooling
Fuser
Decoder
Task-specific GCA (已有)
├─ Detection GCA
└─ Segmentation GCA
Heads
```
---
## 📋 实施计划
### Phase A: Camera Adapter实现 (1周)
```bash
# Day 1-2: 代码实现
创建: mmdet3d/models/vtransforms/camera_aware_lss.py
修改: mmdet3d/models/fusion_models/bevfusion.py
测试: tests/test_camera_adapter.py
# Day 3-4: 配置和集成
创建: configs/.../multitask_camera_adapter.yaml
验证: 加载现有checkpoint
测试: 前向传播正常
# Day 5: 文档
编写: CAMERA_ADAPTER_GUIDE.md
```
### Phase B: 训练和验证 (1周)
```bash
# Day 1: Fine-tune
torchpack dist-run -np 8 python tools/train.py \
configs/.../multitask_camera_adapter.yaml \
--load_from /data/runs/phase4a_stage1_task_gca/epoch_20.pth \
--max_epochs 5
# Day 2-4: 测试不同配置
# 4 cameras: front, front_left, front_right, back
# 5 cameras: + back_left
# 6 cameras: + back_right (原配置)
# 8 cameras: + left, right (假设)
# Day 5: 性能评估和对比
```
---
## 💻 核心代码示例
### 最小实现 (Camera Adapter)
```python
# mmdet3d/models/vtransforms/camera_aware_lss.py
from .lss import LSSTransform
class CameraAwareLSS(LSSTransform):
"""Camera-aware LSS with per-camera adapters"""
def __init__(self, num_cameras=6, **kwargs):
super().__init__(**kwargs)
# 每个camera的adapter (轻量级)
self.camera_adapters = nn.ModuleList([
nn.Sequential(
nn.Conv2d(self.C, self.C, 3, 1, 1, groups=self.C//8),
nn.BatchNorm2d(self.C),
nn.ReLU(),
nn.Conv2d(self.C, self.C, 1),
) for _ in range(num_cameras)
])
def get_cam_feats(self, x, mats_dict):
"""
x: (B, N, C, fH, fW)
"""
B, N, C, fH, fW = x.shape
# 应用camera-specific adapters
adapted = []
for i in range(N):
feat = x[:, i] # (B, C, fH, fW)
adapted_feat = self.camera_adapters[i](feat)
adapted.append(adapted_feat)
x = torch.stack(adapted, dim=1) # (B, N, C, fH, fW)
# 继续原LSS处理
return super().get_cam_feats(x, mats_dict)
```
**配置使用**:
```yaml
model:
encoders:
camera:
vtransform:
type: CameraAwareLSS # 替换DepthLSSTransform
num_cameras: 6 # 可修改为4, 5, 8...
in_channels: 256
out_channels: 80
# ... 其他参数同LSSTransform
```
---
## 🎓 技术细节
### BEV Pooling如何处理N个cameras
```python
# 关键代码: mmdet3d/models/vtransforms/base.py
def bev_pool(self, geom_feats, x):
"""
Args:
x: (B, N, D, H, W, C) # N可以是任意值
geom_feats: (B, N, D, H, W, 3) # 几何信息
Process:
1. Flatten: (B*N*D*H*W, C)
2. 根据几何投影到BEV grid
3. 在同一BEV位置的features累加
4. 返回: (B, C*D, BEV_H, BEV_W)
关键:
- N个cameras的features会自动聚合
- 无需知道N的具体值
- 重叠区域会累加 (implicit fusion)
"""
B, N, D, H, W, C = x.shape
# Flatten所有cameras
x = x.reshape(B*N*D*H*W, C)
# 几何投影和pooling
x = bev_pool_kernel(x, geom_feats, ...) # CUDA kernel
return x # (B, C*D, BEV_H, BEV_W)
```
**结论**:
✅ BEV pooling天然支持动态N
✅ 只需要保证geometry正确
✅ 模型代码几乎不需要改动
---
## ⚙️ 配置示例
### 示例1: 4 Cameras配置
```yaml
# configs/custom/4cameras.yaml
num_cameras: 4
camera_names:
- CAM_FRONT
- CAM_FRONT_LEFT
- CAM_FRONT_RIGHT
- CAM_BACK
model:
encoders:
camera:
vtransform:
type: CameraAwareLSS
num_cameras: 4 # ← 改这里
# 其他参数不变
```
### 示例2: 混合cameras (广角+长焦)
```yaml
num_cameras: 5
camera_configs:
CAM_FRONT_WIDE:
type: wide
fov: 120
focal: 1266.0
adapter_id: 0
CAM_FRONT_TELE:
type: tele
fov: 30
focal: 2532.0
adapter_id: 1
CAM_LEFT:
type: wide
fov: 120
focal: 1266.0
adapter_id: 0 # 共享wide adapter
CAM_RIGHT:
type: wide
adapter_id: 0
CAM_BACK:
type: fisheye
fov: 190
adapter_id: 2
model:
encoders:
camera:
vtransform:
type: CameraAwareLSS
num_cameras: 5
camera_types: ['wide', 'tele', 'wide', 'wide', 'fisheye']
# Adapter会根据type自动选择
```
---
## 🔧 快速开始
### 测试当前模型的camera灵活性
```python
# test_camera_flexibility.py
import torch
from mmdet3d.models import build_model
# 加载当前模型
cfg = Config.fromfile('configs/.../multitask_BEV2X_phase4a_stage1_task_gca.yaml')
model = build_model(cfg.model)
model.load_state_dict(torch.load('epoch_5.pth')['state_dict'])
# 测试不同camera数量
for num_cams in [3, 4, 5, 6, 8]:
print(f"\n测试 {num_cams} cameras:")
# 模拟输入
img = torch.randn(1, num_cams, 3, 900, 1600) # 动态N
camera_intrinsics = torch.randn(1, num_cams, 4, 4)
camera2lidar = torch.randn(1, num_cams, 4, 4)
# ... 其他输入
try:
# 前向传播
output = model.encoders['camera']['vtransform'](
img,
camera_intrinsics=camera_intrinsics,
camera2lidar=camera2lidar,
# ...
)
print(f" ✅ 成功输出shape: {output.shape}")
except Exception as e:
print(f" ❌ 失败: {e}")
```
**预期结果**:
- ✅ 应该支持3-8个cameras (代码层面)
- ⚠️ 但需要重新训练 (权重是针对6个训练的)
---
## 📊 性能预估
### Camera Adapter方案
| Cameras | 参数量 | 训练时间 | 预期mIoU | vs 6-cam |
|---------|--------|---------|---------|---------|
| 4 | 114M | -15% | 58-60% | -1-3% |
| 5 | 114M | -8% | 60-61% | -0-1% |
| 6 | 114M | 基线 | 61% | 0% |
| 8 | 114M | +8% | 62-63% | +1-2% |
**分析**:
- 更多cameras → 更多视角 → 性能提升
- 但收益递减 (6→8只提升1-2%)
- 4 cameras仍可达到58-60% (可接受)
---
## ✨ 总结
**您的问题**: 如何灵活配置cameras
**我的建议**:
1. **立即可用** (无需修改):
- 修改数据加载支持4-8 cameras
- 从现有checkpoint fine-tune
- 1天实现
2. **推荐方案** (最佳ROI):
- 实现Camera Adapter
- 1周开发 + 1周训练
- 性能提升1-2%,灵活性大增
3. **进阶方案** (如需极致):
- Per-Camera Attention
- 2周开发 + 1周训练
- 性能提升2-4%,支持任意配置
4. **MoE不是最优选择**:
- 计算开销大 (+20%)
- 训练复杂
- 收益不如Attention明显
- 除非cameras类型极多 (>8)
**下一步**:
1. 等待当前训练完成 (11/13)
2. 评估是否需要camera灵活性
3. 如需要我立即实现Camera Adapter方案
**需要我现在开始写代码吗?** 🚀